Social network and sentiment analysis of product reviews (case of smartwatch product content)

Authors

  • Yerik Afrianto Singgalen Atma Jaya Catholic University of Indonesia

Keywords:

Sentiment, Social Network, Product, Smartwatch, Reviews

Abstract

This study addresses the need to understand the dynamics of sentiment and social network analysis (SNA) in the context of smartwatch product reviews. Leveraging the CRoss-Industry Standard Process for Data Mining (CRISP-DM) methodology, the research aims to analyze sentiments and social networks to glean insights into consumer behavior and interaction patterns. The CRISP-DM framework guides the research through structured phases of business understanding, data understanding, data preparation, modeling, evaluation, and deployment. Through sentiment analysis using Support Vector Machine (SVM) with Synthetic Minority Over-sampling Technique (SMOTE) and SNA, the study examines accuracy (91.41% +/- 1.66%), precision (100.00% +/- 0.00%), recall (82.80% +/- 3.36%), f-measure (90.56% +/- 2.01%), Area Under the Curve (AUC), as well as network metrics such as diameter (4), density (0.001036), reciprocity (0.000000), centralization (0.004920), and modularity (0.994200). Findings reveal a robust performance of the SVM algorithm coupled with SMOTE, showcasing high accuracy and effective discrimination between sentiments. Additionally, SNA uncovers valuable insights into network structures, communication patterns, and sentiment propagation dynamics within the online community. These findings contribute to a deeper understanding of consumer sentiments and interactions, guiding strategic marketing, product development, and reputation management decisions.

Downloads

Download data is not yet available.

References

Areni, C. S. (2022). Automated text analyses of YouTube comments as field experiments for assessing consumer sentiment towards products and brands. Journal of Product & Brand Management, 31(5), 702–717. https://doi.org/10.1108/JPBM-01-2021-3341

Bilianos, D. (2022). Experiments in Text Classification: Analyzing the Sentiment of Electronic Product Reviews in Greek. Journal of Quantitative Linguistics, 29(3), 374–386. https://doi.org/10.1080/09296174.2021.1885872

Botchway, R. K., Jibril, A. B., Oplatková, Z. K., & Chovancová, M. (2020). Deductions from a Sub-Saharan African Bank’s Tweets: A sentiment analysis approach. Cogent Economics and Finance, 8(1). https://doi.org/10.1080/23322039.2020.1776006

Celuch, K. (2021). Customers’ experience of purchasing event tickets: mining online reviews based on topic modeling and sentiment analysis. International Journal of Event and Festival Management, 12(1), 36–50. https://doi.org/10.1108/IJEFM-06-2020-0034

Dash, A., Zhang, D., & Zhou, L. (2021). Personalized Ranking of Online Reviews Based on Consumer Preferences in Product Features. International Journal of Electronic Commerce, 25(1), 29–50. https://doi.org/10.1080/10864415.2021.1846852

Fang, H., Jiang, G., & Li, D. (2022). Sentiment analysis based on Chinese BERT and fused deep neural networks for sentence-level Chinese e-commerce product reviews. Systems Science and Control Engineering, 10(1), 802–810. https://doi.org/10.1080/21642583.2022.2123060

Güneş, S. (2020). Extracting Online Product Review Patterns and Causes: A New Aspect/Cause Based Heuristic for Designers. Design Journal, 23(3), 371. https://doi.org/10.1080/14606925.2020.1746611

Hoskins, J., Verhaal, J. C., & Griffin, A. (2021). How within-country consumer product (or brand) localness and supporting marketing tactics influence sales performance. European Journal of Marketing, 55(2), 565–592. https://doi.org/10.1108/EJM-11-2018-0787

Hossain, M. S., Begum, H., Rouf, M. A., & Sabuj, M. M. I. (2023). Investigation and prediction of users’ sentiment toward food delivery apps applying machine learning approaches. Journal of Contemporary Marketing Science, 6(2), 109–127. https://doi.org/10.1108/JCMARS-12-2022-0030

Kumar, A., Shrivastav, S. K., & Bhattacharyya, S. (2023). Measuring strategic fit using big data analytics in the automotive supply chain: a data source triangulation-based research. International Journal of Productivity and Performance Management, 72(10), 2977–2999. https://doi.org/10.1108/IJPPM-11-2021-0672

La, L., Xu, F., Ren, Q., Zhen, F., & Lobsang, T. (2022). Understanding Consumers’ Sentiment Expressions in Online Reviews: A Hybrid Approach. Journal of International Consumer Marketing, 34(4), 465–479. https://doi.org/10.1080/08961530.2021.1982807

Lappeman, J., Goder, A., Naicker, K., Faruki, H., & Gordon, P. (2023). Using Sentiment Analysis to Understand Public Policy Nicknames: Obamacare and the Affordable Care Act. Journal of Nonprofit and Public Sector Marketing, 00(00), 1–17. https://doi.org/10.1080/10495142.2023.2178588

Lappeman, J., Meyer, S., & Miguel, D. (2022). Exploring Online Sentiment (OS) As a Measure of Customer Experience (CX) for Telecommunication Services. Services Marketing Quarterly, 43(3), 257–276. https://doi.org/10.1080/15332969.2021.1992558

Mehmet, M. I., & D’Alessandro, S. (2022). More than words can say: a multimodal approach to understanding meaning and sentiment in social media. Journal of Marketing Management, 38(13–14), 1461–1493. https://doi.org/10.1080/0267257X.2022.2105933

Oh, Y. K., & Yi, J. (2022). Asymmetric effect of feature level sentiment on product rating: an application of bigram natural language processing (NLP) analysis. Internet Research, 32(3), 1023–1040. https://doi.org/10.1108/INTR-11-2020-0649

Pfeuffer, A., Lu, X., Zhang, Y., & Huh, J. (2021). The Effect of Sponsorship Disclosure in YouTube Product Reviews. Journal of Current Issues and Research in Advertising, 42(4), 391–410. https://doi.org/10.1080/10641734.2020.1859023

Rahimi, R., Thelwall, M., Okumus, F., & Bilgihan, A. (2022). Know your guests’ preferences before they arrive at your hotel: evidence from TripAdvisor. Consumer Behavior in Tourism and Hospitality, 17(1), 89–106. https://doi.org/10.1108/CBTH-06-2021-0148

Rajeswari, B., Madhavan, S., Venkatesakumar, R., & Riasudeen, S. (2020). Sentiment analysis of consumer reviews – a comparison of organic and regular food products usage. Rajagiri Management Journal, 14(2), 155–167. https://doi.org/10.1108/RAMJ-05-2020-0022

Ray, P., & Chakrabarti, A. (2022). A Mixed approach of Deep Learning method and Rule-Based method to improve Aspect Level Sentiment Analysis. Applied Computing and Informatics, 18(1/2), 163–178. https://doi.org/10.1016/j.aci.2019.02.002

Rodrigues, A. P., Chiplunkar, N. N., & Fernandes, R. (2020). Aspect-based classification of product reviews using Hadoop framework. Cogent Engineering, 7(1). https://doi.org/10.1080/23311916.2020.1810862

Sarmast, Z., Shokouhyar, S., Ghanadpour, S. H., & Shokoohyar, S. (2023). Unravelling the potential of social media data analysis to improve the warranty service operation. Industrial Management & Data Systems, 123(5), 1281–1309. https://doi.org/10.1108/IMDS-07-2022-0427

Singgalen, Y. A. (2023a). Analisis Perilaku Wisatawan Berdasarkan Data Ulasan di Website Tripadvisor Menggunakan CRISP-DM : Wisata Minat Khusus Pendakian Gunung Rinjani dan Gunung Bromo. Journal of Computer System and Informatics (JoSYC), 4(2), 326–338. https://doi.org/10.47065/josyc.v4i2.3042

Singgalen, Y. A. (2023b). Analisis Sentimen Pengunjung Pulau Komodo dan Pulau Rinca di Website Tripadvisor Berbasis CRISP-DM. Journal of Information System Research (JOSH), 4(2), 614–625. https://doi.org/10.47065/josh.v4i2.2999

Singgalen, Y. A. (2023c). Analisis Sentimen Wisatawan terhadap Kualitas Layanan Hotel dan Resort di Lombok Menggunakan SERVQUAL dan CRISP-DM. Building of Informatics, Technology and Science (BITS), 4(4), 1870–1882. https://doi.org/10.47065/bits.v4i4.3199

Singgalen, Y. A. (2023d). Analisis Sentimen Wisatawan terhadap Taman Nasional Bunaken dan Top 10 Hotel Rekomendasi Tripadvisor Menggunakan Algoritma SVM dan DT berbasis CRISP-DM. Journal of Computer System and Informatics (JoSYC), 4(2), 367–379. https://doi.org/10.47065/josyc.v4i2.3092

Singgalen, Y. A. (2023e). Penerapan CRISP-DM dalam Klasifikasi Sentimen dan Analisis Perilaku Pembelian Layanan Akomodasi Hotel Berbasis Algoritma Decision Tree ( DT ). Jurnal Sistem Komputer Dan Informatika (JSON), 5(2), 237–248. https://doi.org/10.30865/json.v5i2.7081

Singgalen, Y. A. (2023f). Penerapan Metode CRISP-DM dalam Klasifikasi Data Ulasan Pengunjung Destinasi Danau Toba Menggunakan Algoritma Naïve Bayes Classifier ( NBC ) dan Decision Tree ( DT ). Jurnal Media Informatika Budidarma, 7(3), 1551–1562. https://doi.org/10.30865/mib.v7i3.6461

Singgalen, Y. A. (2023g). Sentiment classification of coral reef 101 content using decision tree algorithm through CRISP-DM. International Journal of Basic and Applied Science, 12(3), 121–130.

Srivastava, P. R., Sharma, D., & Kaur, I. (2022). Differential effects of online signals on sales performance of local brand clothing products. Journal of Enterprise Information Management, 35(6), 1522–1547. https://doi.org/10.1108/JEIM-01-2020-0039

Suri, A., Huang, B., & Sénécal, S. (2023). This Product Seems Better Now: How Social Media Influencers’ Opinions Impact Consumers’ Post-failure Responses. International Journal of Electronic Commerce, 27(3), 297–323. https://doi.org/10.1080/10864415.2023.2226898

van Atteveldt, W., van der Velden, M. A. C. G., & Boukes, M. (2021). The Validity of Sentiment Analysis: Comparing Manual Annotation, Crowd-Coding, Dictionary Approaches, and Machine Learning Algorithms. Communication Methods and Measures, 15(2), 121–140. https://doi.org/10.1080/19312458.2020.1869198

Vanderkooi, D., Mashatan, A., & Turetken, O. (2023). Introducing technological disruption: how breaking media attention on corporate events impacts online sentiment. Journal of Business Analytics, 7(2), 63–82. https://doi.org/10.1080/2573234X.2023.2274088

Wei Lun Lee, A., Ying Chung, S., Shee Tan, Y., Mun Ho Koh, S., Feng Lu, W., & Sze Choong Low, J. (2023). Enhancing the environmental sustainability of product through ecodesign: a systematic review. Journal of Engineering Design, 34(10), 814–843. https://doi.org/10.1080/09544828.2023.2261094

Yerpude, S., & Rautela, S. (2022). Digitally driven new product development: an involved contemporary innovation case. International Journal of Productivity and Performance Management, 71(5), 1953–1971. https://doi.org/10.1108/IJPPM-09-2019-0448

Zhu, S., Du, S., Nie, T., & Zhu, Y. (2023). Product Pricing and Design Strategy in Platform-Based Collaborative Innovation With Cognitive Bias. International Journal of Electronic Commerce, 27(2), 236–269. https://doi.org/10.1080/10864415.2023.2184240

Downloads

Published

2024-02-28

How to Cite

Singgalen, Y. A. (2024). Social network and sentiment analysis of product reviews (case of smartwatch product content). International Journal on Social Science, Economics and Art, 13(4), 255–267. Retrieved from https://ijosea.isha.or.id/index.php/ijosea/article/view/426

Most read articles by the same author(s)